direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D7×C22×C8, C56⋊11C23, C28.65C24, C7⋊1(C23×C8), C7⋊C8⋊14C23, C14⋊1(C22×C8), (C2×C56)⋊47C22, (C22×C56)⋊17C2, C23.65(C4×D7), C4.64(C23×D7), C14.28(C23×C4), (C4×D7).39C23, (C23×D7).10C4, C28.144(C22×C4), (C2×C28).878C23, D14.25(C22×C4), (C22×C4).469D14, Dic7.26(C22×C4), (C22×Dic7).20C4, (C22×C28).566C22, (C2×C14)⋊6(C2×C8), (C2×C4×D7).25C4, C4.119(C2×C4×D7), C2.2(D7×C22×C4), (C2×C7⋊C8)⋊49C22, (C22×C7⋊C8)⋊24C2, C22.74(C2×C4×D7), (C4×D7).39(C2×C4), (C2×C4).186(C4×D7), (D7×C22×C4).25C2, (C2×C28).256(C2×C4), (C2×C4×D7).309C22, (C22×D7).75(C2×C4), (C2×C4).822(C22×D7), (C22×C14).101(C2×C4), (C2×C14).154(C22×C4), (C2×Dic7).112(C2×C4), SmallGroup(448,1189)
Series: Derived ►Chief ►Lower central ►Upper central
C7 — D7×C22×C8 |
Generators and relations for D7×C22×C8
G = < a,b,c,d,e | a2=b2=c8=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 1124 in 338 conjugacy classes, 207 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, C23, C23, D7, C14, C14, C2×C8, C2×C8, C22×C4, C22×C4, C24, Dic7, C28, C28, D14, C2×C14, C22×C8, C22×C8, C23×C4, C7⋊C8, C56, C4×D7, C2×Dic7, C2×C28, C22×D7, C22×C14, C23×C8, C8×D7, C2×C7⋊C8, C2×C56, C2×C4×D7, C22×Dic7, C22×C28, C23×D7, D7×C2×C8, C22×C7⋊C8, C22×C56, D7×C22×C4, D7×C22×C8
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, D7, C2×C8, C22×C4, C24, D14, C22×C8, C23×C4, C4×D7, C22×D7, C23×C8, C8×D7, C2×C4×D7, C23×D7, D7×C2×C8, D7×C22×C4, D7×C22×C8
(1 168)(2 161)(3 162)(4 163)(5 164)(6 165)(7 166)(8 167)(9 145)(10 146)(11 147)(12 148)(13 149)(14 150)(15 151)(16 152)(17 153)(18 154)(19 155)(20 156)(21 157)(22 158)(23 159)(24 160)(25 119)(26 120)(27 113)(28 114)(29 115)(30 116)(31 117)(32 118)(33 127)(34 128)(35 121)(36 122)(37 123)(38 124)(39 125)(40 126)(41 135)(42 136)(43 129)(44 130)(45 131)(46 132)(47 133)(48 134)(49 143)(50 144)(51 137)(52 138)(53 139)(54 140)(55 141)(56 142)(57 173)(58 174)(59 175)(60 176)(61 169)(62 170)(63 171)(64 172)(65 181)(66 182)(67 183)(68 184)(69 177)(70 178)(71 179)(72 180)(73 189)(74 190)(75 191)(76 192)(77 185)(78 186)(79 187)(80 188)(81 197)(82 198)(83 199)(84 200)(85 193)(86 194)(87 195)(88 196)(89 205)(90 206)(91 207)(92 208)(93 201)(94 202)(95 203)(96 204)(97 213)(98 214)(99 215)(100 216)(101 209)(102 210)(103 211)(104 212)(105 221)(106 222)(107 223)(108 224)(109 217)(110 218)(111 219)(112 220)
(1 108)(2 109)(3 110)(4 111)(5 112)(6 105)(7 106)(8 107)(9 205)(10 206)(11 207)(12 208)(13 201)(14 202)(15 203)(16 204)(17 213)(18 214)(19 215)(20 216)(21 209)(22 210)(23 211)(24 212)(25 171)(26 172)(27 173)(28 174)(29 175)(30 176)(31 169)(32 170)(33 179)(34 180)(35 181)(36 182)(37 183)(38 184)(39 177)(40 178)(41 187)(42 188)(43 189)(44 190)(45 191)(46 192)(47 185)(48 186)(49 195)(50 196)(51 197)(52 198)(53 199)(54 200)(55 193)(56 194)(57 113)(58 114)(59 115)(60 116)(61 117)(62 118)(63 119)(64 120)(65 121)(66 122)(67 123)(68 124)(69 125)(70 126)(71 127)(72 128)(73 129)(74 130)(75 131)(76 132)(77 133)(78 134)(79 135)(80 136)(81 137)(82 138)(83 139)(84 140)(85 141)(86 142)(87 143)(88 144)(89 145)(90 146)(91 147)(92 148)(93 149)(94 150)(95 151)(96 152)(97 153)(98 154)(99 155)(100 156)(101 157)(102 158)(103 159)(104 160)(161 217)(162 218)(163 219)(164 220)(165 221)(166 222)(167 223)(168 224)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184)(185 186 187 188 189 190 191 192)(193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208)(209 210 211 212 213 214 215 216)(217 218 219 220 221 222 223 224)
(1 80 97 85 60 89 72)(2 73 98 86 61 90 65)(3 74 99 87 62 91 66)(4 75 100 88 63 92 67)(5 76 101 81 64 93 68)(6 77 102 82 57 94 69)(7 78 103 83 58 95 70)(8 79 104 84 59 96 71)(9 34 224 42 17 55 30)(10 35 217 43 18 56 31)(11 36 218 44 19 49 32)(12 37 219 45 20 50 25)(13 38 220 46 21 51 26)(14 39 221 47 22 52 27)(15 40 222 48 23 53 28)(16 33 223 41 24 54 29)(105 133 158 138 113 150 125)(106 134 159 139 114 151 126)(107 135 160 140 115 152 127)(108 136 153 141 116 145 128)(109 129 154 142 117 146 121)(110 130 155 143 118 147 122)(111 131 156 144 119 148 123)(112 132 157 137 120 149 124)(161 189 214 194 169 206 181)(162 190 215 195 170 207 182)(163 191 216 196 171 208 183)(164 192 209 197 172 201 184)(165 185 210 198 173 202 177)(166 186 211 199 174 203 178)(167 187 212 200 175 204 179)(168 188 213 193 176 205 180)
(1 184)(2 177)(3 178)(4 179)(5 180)(6 181)(7 182)(8 183)(9 132)(10 133)(11 134)(12 135)(13 136)(14 129)(15 130)(16 131)(17 120)(18 113)(19 114)(20 115)(21 116)(22 117)(23 118)(24 119)(25 160)(26 153)(27 154)(28 155)(29 156)(30 157)(31 158)(32 159)(33 111)(34 112)(35 105)(36 106)(37 107)(38 108)(39 109)(40 110)(41 148)(42 149)(43 150)(44 151)(45 152)(46 145)(47 146)(48 147)(49 139)(50 140)(51 141)(52 142)(53 143)(54 144)(55 137)(56 138)(57 214)(58 215)(59 216)(60 209)(61 210)(62 211)(63 212)(64 213)(65 165)(66 166)(67 167)(68 168)(69 161)(70 162)(71 163)(72 164)(73 202)(74 203)(75 204)(76 205)(77 206)(78 207)(79 208)(80 201)(81 193)(82 194)(83 195)(84 196)(85 197)(86 198)(87 199)(88 200)(89 192)(90 185)(91 186)(92 187)(93 188)(94 189)(95 190)(96 191)(97 172)(98 173)(99 174)(100 175)(101 176)(102 169)(103 170)(104 171)(121 221)(122 222)(123 223)(124 224)(125 217)(126 218)(127 219)(128 220)
G:=sub<Sym(224)| (1,168)(2,161)(3,162)(4,163)(5,164)(6,165)(7,166)(8,167)(9,145)(10,146)(11,147)(12,148)(13,149)(14,150)(15,151)(16,152)(17,153)(18,154)(19,155)(20,156)(21,157)(22,158)(23,159)(24,160)(25,119)(26,120)(27,113)(28,114)(29,115)(30,116)(31,117)(32,118)(33,127)(34,128)(35,121)(36,122)(37,123)(38,124)(39,125)(40,126)(41,135)(42,136)(43,129)(44,130)(45,131)(46,132)(47,133)(48,134)(49,143)(50,144)(51,137)(52,138)(53,139)(54,140)(55,141)(56,142)(57,173)(58,174)(59,175)(60,176)(61,169)(62,170)(63,171)(64,172)(65,181)(66,182)(67,183)(68,184)(69,177)(70,178)(71,179)(72,180)(73,189)(74,190)(75,191)(76,192)(77,185)(78,186)(79,187)(80,188)(81,197)(82,198)(83,199)(84,200)(85,193)(86,194)(87,195)(88,196)(89,205)(90,206)(91,207)(92,208)(93,201)(94,202)(95,203)(96,204)(97,213)(98,214)(99,215)(100,216)(101,209)(102,210)(103,211)(104,212)(105,221)(106,222)(107,223)(108,224)(109,217)(110,218)(111,219)(112,220), (1,108)(2,109)(3,110)(4,111)(5,112)(6,105)(7,106)(8,107)(9,205)(10,206)(11,207)(12,208)(13,201)(14,202)(15,203)(16,204)(17,213)(18,214)(19,215)(20,216)(21,209)(22,210)(23,211)(24,212)(25,171)(26,172)(27,173)(28,174)(29,175)(30,176)(31,169)(32,170)(33,179)(34,180)(35,181)(36,182)(37,183)(38,184)(39,177)(40,178)(41,187)(42,188)(43,189)(44,190)(45,191)(46,192)(47,185)(48,186)(49,195)(50,196)(51,197)(52,198)(53,199)(54,200)(55,193)(56,194)(57,113)(58,114)(59,115)(60,116)(61,117)(62,118)(63,119)(64,120)(65,121)(66,122)(67,123)(68,124)(69,125)(70,126)(71,127)(72,128)(73,129)(74,130)(75,131)(76,132)(77,133)(78,134)(79,135)(80,136)(81,137)(82,138)(83,139)(84,140)(85,141)(86,142)(87,143)(88,144)(89,145)(90,146)(91,147)(92,148)(93,149)(94,150)(95,151)(96,152)(97,153)(98,154)(99,155)(100,156)(101,157)(102,158)(103,159)(104,160)(161,217)(162,218)(163,219)(164,220)(165,221)(166,222)(167,223)(168,224), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,80,97,85,60,89,72)(2,73,98,86,61,90,65)(3,74,99,87,62,91,66)(4,75,100,88,63,92,67)(5,76,101,81,64,93,68)(6,77,102,82,57,94,69)(7,78,103,83,58,95,70)(8,79,104,84,59,96,71)(9,34,224,42,17,55,30)(10,35,217,43,18,56,31)(11,36,218,44,19,49,32)(12,37,219,45,20,50,25)(13,38,220,46,21,51,26)(14,39,221,47,22,52,27)(15,40,222,48,23,53,28)(16,33,223,41,24,54,29)(105,133,158,138,113,150,125)(106,134,159,139,114,151,126)(107,135,160,140,115,152,127)(108,136,153,141,116,145,128)(109,129,154,142,117,146,121)(110,130,155,143,118,147,122)(111,131,156,144,119,148,123)(112,132,157,137,120,149,124)(161,189,214,194,169,206,181)(162,190,215,195,170,207,182)(163,191,216,196,171,208,183)(164,192,209,197,172,201,184)(165,185,210,198,173,202,177)(166,186,211,199,174,203,178)(167,187,212,200,175,204,179)(168,188,213,193,176,205,180), (1,184)(2,177)(3,178)(4,179)(5,180)(6,181)(7,182)(8,183)(9,132)(10,133)(11,134)(12,135)(13,136)(14,129)(15,130)(16,131)(17,120)(18,113)(19,114)(20,115)(21,116)(22,117)(23,118)(24,119)(25,160)(26,153)(27,154)(28,155)(29,156)(30,157)(31,158)(32,159)(33,111)(34,112)(35,105)(36,106)(37,107)(38,108)(39,109)(40,110)(41,148)(42,149)(43,150)(44,151)(45,152)(46,145)(47,146)(48,147)(49,139)(50,140)(51,141)(52,142)(53,143)(54,144)(55,137)(56,138)(57,214)(58,215)(59,216)(60,209)(61,210)(62,211)(63,212)(64,213)(65,165)(66,166)(67,167)(68,168)(69,161)(70,162)(71,163)(72,164)(73,202)(74,203)(75,204)(76,205)(77,206)(78,207)(79,208)(80,201)(81,193)(82,194)(83,195)(84,196)(85,197)(86,198)(87,199)(88,200)(89,192)(90,185)(91,186)(92,187)(93,188)(94,189)(95,190)(96,191)(97,172)(98,173)(99,174)(100,175)(101,176)(102,169)(103,170)(104,171)(121,221)(122,222)(123,223)(124,224)(125,217)(126,218)(127,219)(128,220)>;
G:=Group( (1,168)(2,161)(3,162)(4,163)(5,164)(6,165)(7,166)(8,167)(9,145)(10,146)(11,147)(12,148)(13,149)(14,150)(15,151)(16,152)(17,153)(18,154)(19,155)(20,156)(21,157)(22,158)(23,159)(24,160)(25,119)(26,120)(27,113)(28,114)(29,115)(30,116)(31,117)(32,118)(33,127)(34,128)(35,121)(36,122)(37,123)(38,124)(39,125)(40,126)(41,135)(42,136)(43,129)(44,130)(45,131)(46,132)(47,133)(48,134)(49,143)(50,144)(51,137)(52,138)(53,139)(54,140)(55,141)(56,142)(57,173)(58,174)(59,175)(60,176)(61,169)(62,170)(63,171)(64,172)(65,181)(66,182)(67,183)(68,184)(69,177)(70,178)(71,179)(72,180)(73,189)(74,190)(75,191)(76,192)(77,185)(78,186)(79,187)(80,188)(81,197)(82,198)(83,199)(84,200)(85,193)(86,194)(87,195)(88,196)(89,205)(90,206)(91,207)(92,208)(93,201)(94,202)(95,203)(96,204)(97,213)(98,214)(99,215)(100,216)(101,209)(102,210)(103,211)(104,212)(105,221)(106,222)(107,223)(108,224)(109,217)(110,218)(111,219)(112,220), (1,108)(2,109)(3,110)(4,111)(5,112)(6,105)(7,106)(8,107)(9,205)(10,206)(11,207)(12,208)(13,201)(14,202)(15,203)(16,204)(17,213)(18,214)(19,215)(20,216)(21,209)(22,210)(23,211)(24,212)(25,171)(26,172)(27,173)(28,174)(29,175)(30,176)(31,169)(32,170)(33,179)(34,180)(35,181)(36,182)(37,183)(38,184)(39,177)(40,178)(41,187)(42,188)(43,189)(44,190)(45,191)(46,192)(47,185)(48,186)(49,195)(50,196)(51,197)(52,198)(53,199)(54,200)(55,193)(56,194)(57,113)(58,114)(59,115)(60,116)(61,117)(62,118)(63,119)(64,120)(65,121)(66,122)(67,123)(68,124)(69,125)(70,126)(71,127)(72,128)(73,129)(74,130)(75,131)(76,132)(77,133)(78,134)(79,135)(80,136)(81,137)(82,138)(83,139)(84,140)(85,141)(86,142)(87,143)(88,144)(89,145)(90,146)(91,147)(92,148)(93,149)(94,150)(95,151)(96,152)(97,153)(98,154)(99,155)(100,156)(101,157)(102,158)(103,159)(104,160)(161,217)(162,218)(163,219)(164,220)(165,221)(166,222)(167,223)(168,224), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,80,97,85,60,89,72)(2,73,98,86,61,90,65)(3,74,99,87,62,91,66)(4,75,100,88,63,92,67)(5,76,101,81,64,93,68)(6,77,102,82,57,94,69)(7,78,103,83,58,95,70)(8,79,104,84,59,96,71)(9,34,224,42,17,55,30)(10,35,217,43,18,56,31)(11,36,218,44,19,49,32)(12,37,219,45,20,50,25)(13,38,220,46,21,51,26)(14,39,221,47,22,52,27)(15,40,222,48,23,53,28)(16,33,223,41,24,54,29)(105,133,158,138,113,150,125)(106,134,159,139,114,151,126)(107,135,160,140,115,152,127)(108,136,153,141,116,145,128)(109,129,154,142,117,146,121)(110,130,155,143,118,147,122)(111,131,156,144,119,148,123)(112,132,157,137,120,149,124)(161,189,214,194,169,206,181)(162,190,215,195,170,207,182)(163,191,216,196,171,208,183)(164,192,209,197,172,201,184)(165,185,210,198,173,202,177)(166,186,211,199,174,203,178)(167,187,212,200,175,204,179)(168,188,213,193,176,205,180), (1,184)(2,177)(3,178)(4,179)(5,180)(6,181)(7,182)(8,183)(9,132)(10,133)(11,134)(12,135)(13,136)(14,129)(15,130)(16,131)(17,120)(18,113)(19,114)(20,115)(21,116)(22,117)(23,118)(24,119)(25,160)(26,153)(27,154)(28,155)(29,156)(30,157)(31,158)(32,159)(33,111)(34,112)(35,105)(36,106)(37,107)(38,108)(39,109)(40,110)(41,148)(42,149)(43,150)(44,151)(45,152)(46,145)(47,146)(48,147)(49,139)(50,140)(51,141)(52,142)(53,143)(54,144)(55,137)(56,138)(57,214)(58,215)(59,216)(60,209)(61,210)(62,211)(63,212)(64,213)(65,165)(66,166)(67,167)(68,168)(69,161)(70,162)(71,163)(72,164)(73,202)(74,203)(75,204)(76,205)(77,206)(78,207)(79,208)(80,201)(81,193)(82,194)(83,195)(84,196)(85,197)(86,198)(87,199)(88,200)(89,192)(90,185)(91,186)(92,187)(93,188)(94,189)(95,190)(96,191)(97,172)(98,173)(99,174)(100,175)(101,176)(102,169)(103,170)(104,171)(121,221)(122,222)(123,223)(124,224)(125,217)(126,218)(127,219)(128,220) );
G=PermutationGroup([[(1,168),(2,161),(3,162),(4,163),(5,164),(6,165),(7,166),(8,167),(9,145),(10,146),(11,147),(12,148),(13,149),(14,150),(15,151),(16,152),(17,153),(18,154),(19,155),(20,156),(21,157),(22,158),(23,159),(24,160),(25,119),(26,120),(27,113),(28,114),(29,115),(30,116),(31,117),(32,118),(33,127),(34,128),(35,121),(36,122),(37,123),(38,124),(39,125),(40,126),(41,135),(42,136),(43,129),(44,130),(45,131),(46,132),(47,133),(48,134),(49,143),(50,144),(51,137),(52,138),(53,139),(54,140),(55,141),(56,142),(57,173),(58,174),(59,175),(60,176),(61,169),(62,170),(63,171),(64,172),(65,181),(66,182),(67,183),(68,184),(69,177),(70,178),(71,179),(72,180),(73,189),(74,190),(75,191),(76,192),(77,185),(78,186),(79,187),(80,188),(81,197),(82,198),(83,199),(84,200),(85,193),(86,194),(87,195),(88,196),(89,205),(90,206),(91,207),(92,208),(93,201),(94,202),(95,203),(96,204),(97,213),(98,214),(99,215),(100,216),(101,209),(102,210),(103,211),(104,212),(105,221),(106,222),(107,223),(108,224),(109,217),(110,218),(111,219),(112,220)], [(1,108),(2,109),(3,110),(4,111),(5,112),(6,105),(7,106),(8,107),(9,205),(10,206),(11,207),(12,208),(13,201),(14,202),(15,203),(16,204),(17,213),(18,214),(19,215),(20,216),(21,209),(22,210),(23,211),(24,212),(25,171),(26,172),(27,173),(28,174),(29,175),(30,176),(31,169),(32,170),(33,179),(34,180),(35,181),(36,182),(37,183),(38,184),(39,177),(40,178),(41,187),(42,188),(43,189),(44,190),(45,191),(46,192),(47,185),(48,186),(49,195),(50,196),(51,197),(52,198),(53,199),(54,200),(55,193),(56,194),(57,113),(58,114),(59,115),(60,116),(61,117),(62,118),(63,119),(64,120),(65,121),(66,122),(67,123),(68,124),(69,125),(70,126),(71,127),(72,128),(73,129),(74,130),(75,131),(76,132),(77,133),(78,134),(79,135),(80,136),(81,137),(82,138),(83,139),(84,140),(85,141),(86,142),(87,143),(88,144),(89,145),(90,146),(91,147),(92,148),(93,149),(94,150),(95,151),(96,152),(97,153),(98,154),(99,155),(100,156),(101,157),(102,158),(103,159),(104,160),(161,217),(162,218),(163,219),(164,220),(165,221),(166,222),(167,223),(168,224)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184),(185,186,187,188,189,190,191,192),(193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208),(209,210,211,212,213,214,215,216),(217,218,219,220,221,222,223,224)], [(1,80,97,85,60,89,72),(2,73,98,86,61,90,65),(3,74,99,87,62,91,66),(4,75,100,88,63,92,67),(5,76,101,81,64,93,68),(6,77,102,82,57,94,69),(7,78,103,83,58,95,70),(8,79,104,84,59,96,71),(9,34,224,42,17,55,30),(10,35,217,43,18,56,31),(11,36,218,44,19,49,32),(12,37,219,45,20,50,25),(13,38,220,46,21,51,26),(14,39,221,47,22,52,27),(15,40,222,48,23,53,28),(16,33,223,41,24,54,29),(105,133,158,138,113,150,125),(106,134,159,139,114,151,126),(107,135,160,140,115,152,127),(108,136,153,141,116,145,128),(109,129,154,142,117,146,121),(110,130,155,143,118,147,122),(111,131,156,144,119,148,123),(112,132,157,137,120,149,124),(161,189,214,194,169,206,181),(162,190,215,195,170,207,182),(163,191,216,196,171,208,183),(164,192,209,197,172,201,184),(165,185,210,198,173,202,177),(166,186,211,199,174,203,178),(167,187,212,200,175,204,179),(168,188,213,193,176,205,180)], [(1,184),(2,177),(3,178),(4,179),(5,180),(6,181),(7,182),(8,183),(9,132),(10,133),(11,134),(12,135),(13,136),(14,129),(15,130),(16,131),(17,120),(18,113),(19,114),(20,115),(21,116),(22,117),(23,118),(24,119),(25,160),(26,153),(27,154),(28,155),(29,156),(30,157),(31,158),(32,159),(33,111),(34,112),(35,105),(36,106),(37,107),(38,108),(39,109),(40,110),(41,148),(42,149),(43,150),(44,151),(45,152),(46,145),(47,146),(48,147),(49,139),(50,140),(51,141),(52,142),(53,143),(54,144),(55,137),(56,138),(57,214),(58,215),(59,216),(60,209),(61,210),(62,211),(63,212),(64,213),(65,165),(66,166),(67,167),(68,168),(69,161),(70,162),(71,163),(72,164),(73,202),(74,203),(75,204),(76,205),(77,206),(78,207),(79,208),(80,201),(81,193),(82,194),(83,195),(84,196),(85,197),(86,198),(87,199),(88,200),(89,192),(90,185),(91,186),(92,187),(93,188),(94,189),(95,190),(96,191),(97,172),(98,173),(99,174),(100,175),(101,176),(102,169),(103,170),(104,171),(121,221),(122,222),(123,223),(124,224),(125,217),(126,218),(127,219),(128,220)]])
160 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | ··· | 4H | 4I | ··· | 4P | 7A | 7B | 7C | 8A | ··· | 8P | 8Q | ··· | 8AF | 14A | ··· | 14U | 28A | ··· | 28X | 56A | ··· | 56AV |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 8 | ··· | 8 | 8 | ··· | 8 | 14 | ··· | 14 | 28 | ··· | 28 | 56 | ··· | 56 |
size | 1 | 1 | ··· | 1 | 7 | ··· | 7 | 1 | ··· | 1 | 7 | ··· | 7 | 2 | 2 | 2 | 1 | ··· | 1 | 7 | ··· | 7 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
160 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C8 | D7 | D14 | D14 | C4×D7 | C4×D7 | C8×D7 |
kernel | D7×C22×C8 | D7×C2×C8 | C22×C7⋊C8 | C22×C56 | D7×C22×C4 | C2×C4×D7 | C22×Dic7 | C23×D7 | C22×D7 | C22×C8 | C2×C8 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 12 | 1 | 1 | 1 | 12 | 2 | 2 | 32 | 3 | 18 | 3 | 18 | 6 | 48 |
Matrix representation of D7×C22×C8 ►in GL4(𝔽113) generated by
112 | 0 | 0 | 0 |
0 | 112 | 0 | 0 |
0 | 0 | 112 | 0 |
0 | 0 | 0 | 112 |
1 | 0 | 0 | 0 |
0 | 112 | 0 | 0 |
0 | 0 | 112 | 0 |
0 | 0 | 0 | 112 |
44 | 0 | 0 | 0 |
0 | 98 | 0 | 0 |
0 | 0 | 44 | 0 |
0 | 0 | 0 | 44 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 88 | 2 |
0 | 0 | 112 | 104 |
112 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 88 | 59 |
0 | 0 | 112 | 25 |
G:=sub<GL(4,GF(113))| [112,0,0,0,0,112,0,0,0,0,112,0,0,0,0,112],[1,0,0,0,0,112,0,0,0,0,112,0,0,0,0,112],[44,0,0,0,0,98,0,0,0,0,44,0,0,0,0,44],[1,0,0,0,0,1,0,0,0,0,88,112,0,0,2,104],[112,0,0,0,0,1,0,0,0,0,88,112,0,0,59,25] >;
D7×C22×C8 in GAP, Magma, Sage, TeX
D_7\times C_2^2\times C_8
% in TeX
G:=Group("D7xC2^2xC8");
// GroupNames label
G:=SmallGroup(448,1189);
// by ID
G=gap.SmallGroup(448,1189);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,80,102,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^8=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations